EQUATIONS INVOLVING FRACTIONS (RATIONAL EQUATIONS)


Note:



If you would like an in-depth review of fractions, click on Fractions.




Solve for x in the following equation.


Problem 5.3b: $\displaystyle \frac{3x-2}{x+7}=\displaystyle \frac{2x+11}{x-9}+\displaystyle \frac{x-1
}{x+5}$



Answer: $x=\displaystyle \frac{-67\pm 2\sqrt{93}}{23}\approx -2.074465,$ -3.751622



Solution:


Recall that you cannot divide by zero. Therefore, the first fraction is valid if , $\quad x\neq -7,$ the second fraction is valid if $
x\neq 9,\quad $and the third fraction is valid is $x\neq -5$.    If $
\quad -7,$ 9, or $-5\quad $ turn out to be the solutions, you must discard them as extraneous solutions.


Multiply both sides by the least common multiple $\left( x+7\right)
\left( x-9\right) \left( x+5\right) \qquad $(the smallest number that all the denominators will divide into evenly). This step will eliminate all the denominators.



\begin{eqnarray*}\displaystyle \frac{3x-2}{x+7} &=&\displaystyle \frac{2x+11}{x-...
...playstyle \frac{2x+11}{x-9}+\displaystyle \frac{x-1}{x+5}\right]
\end{eqnarray*}



\begin{eqnarray*}\left( x+7\right) \left( x-9\right) \left( x+5\right) \left[ \d...
...) \left( x+5\right) \left[ \displaystyle \frac{x-1}{
x+5}\right]
\end{eqnarray*}


which is equivalent to

\begin{eqnarray*}\frac{\left( x+7\right) \left( x-9\right) \left( x+5\right) }{1...
...eft( x+5\right) }{1}\left[
\displaystyle \frac{x-1}{x+5}\right]
\end{eqnarray*}


which can be rewritten as

\begin{eqnarray*}\frac{\left( x+7\right) \left( x-9\right) \left( x+5\right) \le...
...right) \left( x+5\right) \left(
x-1\right) }{\left( x+5\right) }
\end{eqnarray*}


which can be rewritten as

\begin{eqnarray*}\frac{\left( x+7\right) }{\left( x+7\right) }\cdot \frac{\left(...
...\frac{\left(
x+7\right) \left( x-9\right) \left( x-1\right) }{1}
\end{eqnarray*}


which can be simplified to

\begin{eqnarray*}1\cdot \frac{\left( x-9\right) \left( x+5\right) \left( 3x-2\ri...
...11\right) +\left( x+7\right) \left( x-9\right)
\left( x-1\right)
\end{eqnarray*}



\begin{eqnarray*}\left( x-9\right) \left[ \left( x+5\right) \left( 3x-2\right) \...
...x^{2}+21x+55\right] +\left( x+7\right) \left[ x^{2}-10x+9\right]
\end{eqnarray*}



\begin{eqnarray*}x\left[ 3x^{2}+13x-10\right] -9\left[ 3x^{2}+13x-10\right] &=&x...
...&& \\
&&+x\left[ x^{2}-10x+9\right] +7\left[ x^{2}-10x+9\right]
\end{eqnarray*}



\begin{eqnarray*}3x^{3}+13x^{2}-10x-27x^{2}-117x+90 &=&2x^{3}+21x^{2}+55x+14x^{2}+147x+385 \\
&& \\
&&+x^{3}-10x^{2}+9x+7x^{2}-70x+63
\end{eqnarray*}



\begin{eqnarray*}3x^{3}-14x^{2}-127x+90 &=&3x^{3}+32x^{2}+141x+448 \\
&& \\
&& \\
-46x^{2}-268x-358 &=&0 \\
&& \\
&& \\
23x^{2}+134x+179 &=&0
\end{eqnarray*}


Solve for x using the quadratic formula $x=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}
$ $a=23,\quad b=134,\quad c=179$

\begin{eqnarray*}23x^{2}+134x+179 &=&0 \\
&& \\
&& \\
x &=&\displaystyle \fra...
... ^{2}-4\left(
23\right) \left( 179\right) }}{2\left( 23\right) }
\end{eqnarray*}



\begin{eqnarray*}x &=&\displaystyle \frac{-134\pm \sqrt{1488}}{46} \\
&& \\
&& \\
x &=&\displaystyle \frac{-134\pm 4\sqrt{93}}{46}
\end{eqnarray*}



\begin{eqnarray*}x &=&\displaystyle \frac{2\left( -67\pm 2\sqrt{93}\right) }{2\l...
...\
&& \\
&& \\
x &=&\displaystyle \frac{-67\pm 2\sqrt{93}}{23}
\end{eqnarray*}



\begin{eqnarray*}x &=&\displaystyle \frac{-67+2\sqrt{93}}{23}\approx -2.074465 \...
...\
x &=&\displaystyle \frac{-67-2\sqrt{93}}{23}\approx -3.751522
\end{eqnarray*}



The exacts answers are $x=\displaystyle \frac{-67\pm 2\sqrt{93}}{23}$ and the approximate answers are -2.074465 and $-3.751522.\medskip\bigskip\bigskip\medskip $

Check the solution $x=\displaystyle \frac{-67+2\sqrt{93}}{23}\smallskip $ by substituting -2.074465 in the original equation for x. If the left side of the equation equals the right side of the equation after the substitution, you have found the correct answer.


Since the left side of the equation equals the right side of the equation after the substitution, we have verified that $x=\displaystyle \frac{-67+2\sqrt{93}}{23}
\smallskip\approx $ -2.074465 is a solution.




Check the solution $x=\displaystyle \frac{-67-2\sqrt{93}}{23}$ by substituting -3.751622in the original equation for x. If the left side of the equation equals the right side of the equation after the substitution, you have found the correct answer.


Since the left side of the equation equals the right side of the equation after the substitution, we have verified that $x=\displaystyle \frac{-67-2\sqrt{93}}{23}
\smallskip\approx -3.751622$ is a solution.



You can also check your answer by graphing $\quad f(x)=\displaystyle \frac{3x-2}{x+7}-
\displaystyle \frac{2x+11}{x-9}-\displaystyle \frac{x-1}{x+5}\mathbf{\bigskip\bigskip }.\quad $(formed by subtracting the right side of the original equation from the left side). Look to see where the graph crosses the x-axis; that will be the real solution. Note that the graph crosses the x-axis at two places: $x\approx
-3.751622$ and -2.074465.


This verifies our solution graphically.


We have verified our solution both algebraically and graphically.




If you would like to review the solution to problem 5.3b, click on Problem.


If you would like to go back to the equation table of contents, click on Contents


[Algebra] [Trigonometry]
[Geometry] [Differential Equations]
[Calculus] [Complex Variables] [Matrix Algebra]

S.O.S MATHematics home page


Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.


Author: Nancy Marcus

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour