If you would like an review of trigonometry, click on trigonometry.

Solve for x in the following equation.

Example 3:

$12\cos \left( 4x\right) -7=3\cos \left( 4x\right) $

There are an infinite number of solutions to this problem. To solve for x, you must first isolate the cosine term.

\begin{eqnarray*}&& \\
12\cos \left( 4x\right) -7 &=&3\cos \left( 4x\right) \\ ...
...eft( 4x\right) &=&\displaystyle \frac{7}{9} \\
&& \\
&& \\

If we restriction the domain of the cosine function to $\left[ 0\leq 4x\leq
\pi \right] \rightarrow \left[ 0,\displaystyle \frac{\pi }{4}\right] $, we can use the inverse cosine function to solve for reference angle $x^{\prime },$ and then x.

\begin{eqnarray*}&& \\
\cos \left( 4x\right) &=&\displaystyle \frac{7}{9} \\
&... &=&\cos ^{-1}\left( \displaystyle \frac{7}{
9}\right) \\
4x &=&\cos ^{-1}\left( \displaystyle \frac{7}{9}\right) \...
...tyle \frac{7}{9}\right) \\
&& \\
x &\approx &0.16991845 \\
\mbox{ Reference Angle } &:&x^{\prime }\approx \displayst...
...ce Angle } &:&x^{\prime }\approx 0.16991845 \\
&& \\
&& \\

The period of $\cos \left( x\right) $ is $2\pi $ and the period of $\cos
\left( 4x\right) $ is $\displaystyle \frac{2\pi }{4}=\displaystyle \frac{\pi }{2}.$ Divide the interval $\left[ 0,\displaystyle \frac{\pi }{2}\right] $ into four equal intervals: $
\left[ 0,\displaystyle \frac{\pi }{8}\right] ,$ $\left[ \displaystyle \frac{\pi }{8},\displaystyle \frac{\pi }{4}
\right] ,$ $\left[ \displaystyle \frac{\pi }{4},\displaystyle \frac{3\pi }{8}\right] ,$ $\left[ \displaystyle \frac{
3\pi }{8},\displaystyle \frac{\pi }{2}\right] .\bigskip $

We know that the cosine function is positive in the first and the fourth quadrant (intervals). Therefore two of the solutions are the angle $
x_{1}=x^{\prime }$ that terminates in the first quadrant and the angle $
x_{2}=\displaystyle \frac{\pi }{2}-x^{\prime }$ that terminates in the fourth quadrant. We have already solved for $x^{\prime }.$

\begin{eqnarray*}&& \\
x_{1} &=&x^{\prime }=\displaystyle \frac{1}{4}\cos ^{-1}...
...right) \\
&& \\
x_{2} &\approx &1.4008779 \\
&& \\
&& \\

The solutions are $x=\displaystyle \frac{1}{4}\cos ^{-1}\left( \displaystyle \frac{7}{9}\right) $ and $x=
\displaystyle \frac{\pi }{2}-\displaystyle \frac{1}{4}\cos ^{-1}\left( \displaystyle \frac{7}{9}\right) .\bigskip
\bigskip\bigskip $

The period of the $\cos
\left( 4x\right) $ function is $\displaystyle \frac{\pi }{2}.$This means that the values will repeat every $\displaystyle \frac{\pi }{2}$ radians in both directions. Therefore, the exact solutions are $x=\displaystyle \frac{1}{4}\cos
^{-1}\left( \displaystyle \frac{7}{9}\right) \pm n\left( 2\pi \right) $ and $x=\displaystyle \frac{\pi }{
2}-\displaystyle \frac{1}{4}\cos ^{-1}\left( \displaystyle \frac{7}{9}\right) \pm n\left( 2\pi \right) $where n is an integer.

The approximate solutions are $x\approx 0.16991845\pm n\left( 2\pi \right) $and $x\approx 1.400878\pm \left( 2\pi \right) $ where n is an integer.

These solutions may or may not be the answers to the original problem. You much check them, either numerically or graphically, with the original equation.

Numerical Check:

Check answer x=0.16991845

Since the left side equals the right side when you substitute 0.16991845for x, then 0.16991845 is a solution.

Check answer x=1.400878

  • Left Side: $\qquad 12\cos \left( 4x\right) -7\approx 12\cos \left( 4\left(
1.400878\right) \right) -7\approx 2.33333\bigskip $

  • Right Side:         $3\cos \left( 4x\right) \approx 3\cos \left( 4\left(
1.400878\right) \right) \approx 2.3333333\bigskip $

    Since the left side equals the right side when you substitute 1.400878 for x, then 1.400878 is a solution.

    Graphical Check:

    Graph the equation

    $f(x)=12\cos \left( 4x\right) -7-3\cos \left( 4x\right)
=9\cos \left( 4x\right) -7.$

    Note that the graph crosses the x-axis many times indicating many solutions.

    The graph crosses the x-axis at 0.16991845. Since the period is $\displaystyle \frac{
\pi }{2}\approx 1.570796$, it crosses again at 0.16991845+1.570796=1.74071477 and at 0.16991845+2(1.570796)=3.31151045, etc.

    The graph also crosses the x-axis at 1.400878. Since the period is $\displaystyle \frac{
\pi }{2}\approx 1.570796$, it crosses again at 1.400878+1.570796=2.971674and at 1.400878+2(1.570796)=4.5424707, etc.

    If you would like to work another example, click on Example.

    If you would like to test yourself by working some problems similar to this example, click on Problem.

    IF you would like to go to the next section, click on Next.

    If you would like to go back to the equation table of contents, click on Contents.

    This site was built to accommodate the needs of students. The topics and problems are what students ask for. We ask students to help in the editing so that future viewers will access a cleaner site. If you feel that some of the material in this section is ambiguous or needs more clarification, please let us know by e-mail.

    [Algebra] [Trigonometry]
    [Geometry] [Differential Equations]
    [Calculus] [Complex Variables] [Matrix Algebra]

    S.O.S MATHematics home page

    Author: Nancy Marcus

    Copyright 1999-2019 MathMedics, LLC. All rights reserved.
    Contact us
    Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
    users online during the last hour