SOLVING TRIGONOMETRIC EQUATIONS


Note:

If you would like a review of trigonometry, click on trigonometry.



Solve for the real number x in the following equation.



Problem 9.3b:         $17\cos \left( 6x\right) -8=7\cos \left( 6x\right) $


Answers:        There are an infinite number of solutions: $x=\displaystyle \frac{1}{6}
\cos ^{-1}\left( \displaystyle \frac{4}{5}\right) \pm n\left( \displaystyle \frac{\pi }{3}\right) $and $x=\displaystyle \frac{\pi }{3}-\cos ^{-1}\left( \displaystyle \frac{4}{5}\right) \pm n\left(
\displaystyle \frac{\pi }{3}\right) $ are the exact solutions, and $x\approx 0.10725\pm
n\left( \displaystyle \frac{\pi }{3}\right) $ and $x\approx 0.9399473664\pm n\left(
\displaystyle \frac{\pi }{3}\right) $ are the approximate solutions.



Solution:


To solve for x, first isolate the cosine term.


\begin{eqnarray*}&& \\
17\cos \left( 6x\right) -8 &=&7\cos \left( 6x\right) \\ ...
...isplaystyle \frac{8}{10}=\displaystyle \frac{4}{5} \\
&& \\
&&
\end{eqnarray*}


If we restrict the domain of the cosine function to $0\leq 6x\leq \pi
\rightarrow 0\leq x\leq \displaystyle \frac{\pi }{6}$, we can use the arccos function to solve for x.

\begin{eqnarray*}\cos \left( 6x\right) &=&\displaystyle \frac{8}{10}=\displaysty...
...ac{1}{6}\cos ^{-1}\left( \displaystyle \frac{4}{5}\right) \\
&&
\end{eqnarray*}



\begin{eqnarray*}&&\\
\mbox{ Reference Angle } &:&x^{\prime }=\displaystyle \fr...
...\
\mbox{ Reference Angle } &:&x^{\prime }=0.10725 \\
&& \\
&&
\end{eqnarray*}


The period of $\cos \left( x\right) $ is $2\pi .$ The period of $\cos \left(
6x\right) $ is $\displaystyle \frac{2\pi }{6}=\displaystyle \frac{\pi }{3}.$ Divide the interval $
\left[ 0,\displaystyle \frac{\pi }{3}\right] $ into four equal intervals: $\left[ 0,
\displaystyle \frac{\pi }{12}\right] ,\ \left[ \displaystyle \frac{\p...
... ,\
\left[ \displaystyle \frac{\pi }{6},\displaystyle \frac{\pi }{4}\right] ,\ $and $\left[ \displaystyle \frac{\pi }{4}
,\displaystyle \frac{\pi }{3}\right] .\bigskip\bigskip $

The cosine of 6x is positive in the first quadrant $\left[ 0,\displaystyle \frac{\pi }{12}
\right] $ and in the fourth quadrant $\left[ \displaystyle \frac{\pi }{4},\displaystyle \frac{\pi }{3}
\right] $.



This means that there are two solutions in the first counterclockwise rotation from 0 to $\displaystyle \frac{\pi }{3}$. One angle, $x_{1}=x^{\prime }=\cos
^{-1}\left( \displaystyle \frac{4}{5}\right) \approx 0.10725$ terminates in the first quadrant and angle $x_{2}=\displaystyle \frac{\pi }{3}-\cos ^{-1}\left( \displaystyle \frac{4}{5}
\right) \approx 0.9399473664$ terminates in the fourth quadrant.


Since the period is $\displaystyle \frac{\pi }{3},$ this means that the values will repeat every $\displaystyle \frac{\pi }{3}$ radians. Therefore, the solutions are $x\approx 0.10725\pm
n\left( \displaystyle \frac{\pi }{3}\right) $ and $x\approx
0.9399474\pm n\left( \displaystyle \frac{\pi }{3}\right) $ where n is an integer.



These solutions may or may not be the answers to the original problem. You much check them, either numerically or graphically, with the original equation.



Numerical Check:


Check the answer .x=0.10725


Left Side: $\qquad 17\cos \left( 6x\right) -8\approx 17\cos \left( 6\left(
0.10725\right) \right) -8\approx 5.6000$

Right Side:         $7\cos \left( 6x\right) \approx 7\cos \left( 6\left(
0.10725\right) \right) \approx 5.6000\bigskip $

Since the left side equals the right side when you substitute 0.10725 for x, then 0.10725 is a solution.




Check the answer . x=0.9399474


Left Side: $\qquad 17\cos \left( 6x\right) -8\approx 17\cos \left( 6\left(
0.9399474\right) \right) -8\approx 5.6000$

Right Side:         $7\cos \left( 6x\right) \approx 7\cos \left( 6\left(
0.9399474\right) \right) \approx 5.6000\bigskip $

Since the left side equals the right side when you substitute 0.9399474for x, then 0.9399474 is a solution.




Graphical Check: Graph the equation $f(x)=10\cos \left( 6x\right) -8.$ (Formed by subtracting the right side of the original equation from the left side of the original equation.


Note that the graph crosses the x-axis many times indicating many solutions.


Note the graph crosses at 0.10725 (one of the solutions). Since the period of the function is $\displaystyle \frac{\pi }{3}\approx
1.04719755$, the graph crosses again at 0.10725+1.04719755=1.15444755 and again at $0.10725+2\left( 1.04719755\right) \approx 2.2016451$, etc.


Note the graph also crosses at 0.9399474 (one of the solutions). Since the period of the function is $\displaystyle \frac{\pi }{3}\approx
1.04719755$, the graph crosses again at 0.9399474+1.04719755=1.987145 and again at $0.9399474+2\left( 1.04719755\right) \approx 3.0343425$, etc.


If you would like to test yourself by working some problems similar to this example, click on problem.




If you would like to go back to the equation table of contents, click on Contents


[Algebra] [Trigonometry]
[Geometry] [Differential Equations]
[Calculus] [Complex Variables] [Matrix Algebra]

S.O.S MATHematics home page



Author: Nancy Marcus

Copyright © 1999-2024 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour