Problems on Techniques of Integration

We recognize here a rational function. The technique of integrationg such functions is the partial decomposition technique. In this case, the degree of the denominator as well as the numerator is 1, therefore we must perform long-division. In this case, it is quite easy since

\begin{displaymath}\frac{x - 3}{x - 4} = 1 + \frac{1}{x - 4}\cdot\end{displaymath}

Using the known formula

\begin{displaymath}\int \frac{u'}{u} dx = \ln\vert u\vert + C,\end{displaymath}

we get

\begin{displaymath}\int \frac{x - 3}{x - 4}dx = x + \ln\vert x-4\vert+ C\;.\end{displaymath}

It is a common mistake to forget the constant $C$.


If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Mohamed A. Khamsi

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour