Problems on Techniques of Integration

Problem. Evaluate

\begin{displaymath}\int x^n \ln(x) dx\;\;\;\mbox{where}\;\;n = 1,2,\cdots\end{displaymath}

Short Answer. Use the Integration by Parts. Set

u &=& \ln(x)\\
dv &=& x^n dx\;.


du &=&\displaystyle \frac{1}{x} dx\...
v &=& \displaystyle \frac{x^{n+1}}{n+1}\;.


\begin{displaymath}\int x^n \ln(x) dx = \frac{x^{n+1}}{n+1} \ln(x) - \int \frac{...
...{1}{x} dx = \frac{x^{n+1}}{n+1} \ln(x) - \int \frac{x^n}{n+1}dx\end{displaymath}


\begin{displaymath}\int x^n \ln(x) dx = \frac{x^{n+1}}{n+1} \ln(x) - \frac{x^{n+1}}{(n+1)^2} + C\;.\end{displaymath}

Detailed Answer.

If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Mohamed A. Khamsi

Copyright 1999-2019 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour