Problems on Techniques of Integration

Since the degree of the numerator is bigger than the degree of the denominator, we will perform the long division to get

\begin{displaymath}\frac{x^n}{ax^2 + b x + c}= \frac{1}{a} x^{n-2} - \frac{1}{a}\;\;\frac{bx^{n-1} + cx^{n-2}}{ax^2 + b x + c}\end{displaymath}

So

\begin{displaymath}\int \frac{x^n}{ax^2 + b x + c}dx = \frac{1}{a(n-1)}x^{n-1} - \frac{1}{a}\; \int \frac{bx^{n-1} + cx^{n-2}}{ax^2 + b x + c}dx\end{displaymath}

or

\begin{displaymath}\int \frac{x^n}{ax^2 + b x + c}dx = \frac{1}{a(n-1)}x^{n-1} -...
...b x + c}dx - \frac{c}{a}\;\int \frac{x^{n-2}}{ax^2 + b x + c}dx\end{displaymath}

Detailed Answer.


If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Mohamed A. Khamsi

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour