Problems on Techniques of Integration

The Arctangent function is one of these functions whose derivative is very nice (rational function). So it is a good idea to use the integration by parts technique in which $\arctan(x)$ will be differentiated. One may argue that we do not have two functions to apply this technique. That's true except that $\arctan(x)$ may also be seen as the product of the functions $1$ and $\arctan(x)$.

Set

\begin{displaymath}\left\{\begin{array}{lll}
u &=& \arctan(x)\\
dv &=& dx\;.
\end{array}\right.\end{displaymath}

Then

\begin{displaymath}\left\{\begin{array}{lll}
du &=&\displaystyle \frac{1}{x^2 + 1} dx\\
v &=& x\;.
\end{array}\right.\end{displaymath}

Since

\begin{displaymath}\int u dv = u v - \int v du\;,\end{displaymath}

we get So

\begin{displaymath}\int \arctan(x) dx = x \arctan(x) - \int x \frac{1}{x^2 + 1} dx = x \arctan(x) - \int \frac{x}{x^2 + 1}dx\end{displaymath}

But

\begin{displaymath}\int \frac{x}{x^2 + 1}dx = \int \frac{1}{2}\; \frac{2x}{x^2 + 1}dx = \frac{1}{2} \ln(x^2+1)\end{displaymath}

which implies

\begin{displaymath}\int \arctan(x) dx = x \arctan(x) - \frac{1}{2}\ln(x^2+1) + C\;.\end{displaymath}

It is a common mistake to forget the constant $C$.


If you prefer to jump to the next problem, click on Next Problem below.

[Next Problem] [Matrix Algebra]
[Trigonometry] [Calculus]
[Geometry] [Algebra]
[Differential Equations] [Complex Variables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Mohamed A. Khamsi

Copyright © 1999-2024 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour