Introduction: Answer to Example4

Example: Consider the following predator-prey model:

displaymath28.

1.
Does x(t) denote the predator population or the prey population? Justify your answer.
2.
Find all equilibrium points of the system.
3.
Suppose the prey population becomes extinct while the predator population is still positive. Describe the long-term behavior of the predator population.
4.
Suppose the predator population becomes extinct while the prey population is still positive. Describe the long-term behavior of the prey population.
5.
Describe the long-term behavior of the system when the initial populations are given by

displaymath32.

Answer:

1.
Recall that in the absence of prey, the population of predators decrease. It is clear that if y=0, then we have x'(t) = -x, meaning that x(t) will decrease. While, if we set x=0, we have y'=2y(1-y/2). Here we recognize the logistic equation which implies that y should get closer and closer to the carrying capacity y=2. Conclusion x represents the predator population.
2
The equilibrium points are solutions of the system

displaymath89.

Since,

displaymath91,

we have the following two cases:

Finally, the system has three equilibrium points

displaymath107

3.
It will become extinct.
4.
It will approach the carrying capacity y=2.

5.
Using the answer to 2, we see that the initial populations correspond to an equilibrium point. Therefore, both populations will remain unchanged

displaymath111.

Next Example:

[Differential Equations] [First Order D.E.]
[Geometry] [Algebra] [Trigonometry ]
[Calculus] [Complex Variables] [Matrix Algebra]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard..

Author: Mohamed Amine Khamsi

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour